
INF584 - Synthèse d'Image
Yassine Mankai

Gabor Noise
Article reference: Lagae, Ares, Sylvain Lefebvre, George Drettakis, and Philip Dutré. ‘Procedural Noise Using Sparse

Gabor Convolution’. ACM Transactions on Graphics 28, no. 3 (2009): 54–64.

I/Paper Summary:

In this project, I try to implement some of the features discussed in the article. The paper

presents a new technique to procedurally generate noise. This technique can be calculated

on the fly with good time performance and a very low memory usage. It presents a high

spectral control with intuitive parameters (orientation, principal frequency and bandwidth)

which allowed the authors to create an interactive tool where the user can shape and

design the intended noise in the spectral domain. In this paper, Lagae et al. proposed a use

case in the form of texture generation. The noise values are used to sample on a color map.

Controlling both the power spectrum control and the color map results in “visually

interesting textures” in a simple manner.

1) Theory:

Gabor noise is expressed in the form of a random pulse process. It is the sum of “randomly

weighted and positioned pulses using a gabor kernel g. The weights wi are sampled as the

realizations of a uniform random variable W with a mean = 0. The positions are sampled as

the realization of a poisson point process. In practice, we generate a random value N of the

number of points using a Poisson distribution. And we generate N positions using a

uniform random distribution.

The main idea of this article is the use of a gabor kernel in such process. This kernel is

calculated as the product of a gaussian envelope (parameterized by a magnitude K and a

width a) and harmonic (parameterized with a frequency magnitude F0 and a direction in

the spectral space w).

The advantage of such a kernel is that it can be approximated with a compact support in

both the spectral and the spatial domain.

2) A generalized noise:

In the article, they present a way to have maximum control on the band-limits of the noise.

Instead of generating all the values using a fixed F0 and w, we can randomly sample these

to parameters inside a set of frequency regions:

The article investigates the different variations of this formulation to create a wide range of

textures. The basic two types are:

- A band-limited isotropic noise:

- A band-limited anisotropic noise:

The parameters of the Gabor kernel have an intuitive meaning in both domains. -> The

frequency (F0, ω0) can be interpreted as the principal frequency, and the width a as the

bandwidth (the range of frequencies around the principal frequency)

A second important feature of the presented method is the versatility in the type of

generated noise. The base idea was to generate a 2D texture and apply it using a good

parameterization of the mesh. This has obvious limits. For this reason, a solid version can

be used for certain forms of meshes and certain types of intended material. In addition to

these two, the article presents a setup-free version based on the projection of 3D sampled

points onto the point tangent surface and then applying the 2D kernel.

2

3) Procedural Evaluation:

The paper discussed some subjects related to their implementation. The main one relates

to the use of a grid to allow for an on-the-fly procedural generation. The sampling space is

divided into cells of size equal to the kernel radius. The noise properties are generated

using a pseudo-random generator with seeds calculated from the cell position and a global

random offset. This way, we can have consistent results without the need to store the

actual property values in each cell.

II/My Implementation:

A code was provided with the paper. I based my work on it and adapted it to make it work

inside the already implemented renderer (both the rasterizer and raytracer versions).

Before the scene is loaded, I run a texture generation step where I fill the data (float or vec3

array) attribute of a texture with values generated using the gabor noise. For a resolution of

256*256, It takes around 2.6 seconds to generate the texture on CPU and load it to GPU for

further use. After these steps, a texture is attached to a material object and used exactly

like the ones we load from disk. The main use was to generate albedo values. For this

reason, I needed to convert a [0,1] value into a color in a way that allows enough control of

the results. I implemented a simple color map feature where I define it as an array of n

predefined colors and the [0,1] value alpha is used to linearly interpolate between the two

colors having the two closest index to alpha * n.

I also implemented for the raytracer the surface setup-free and the solid version of the

noise. I faced an issue with the normalization of such values. For the moment, I use hard

coded scaling factors to get values in the intended range but a correct way to calculate the

variance should be explored.

3

III/Result:

To test the features implemented in the context of this project, I started by exploring the

effect of some of the parameters. The orientation factor was the most obvious one as it

decides how the stripes are oriented in the texture. The width of the gaussian envelope was

harder for me to visualize. Here I present the result for two different values.

High value Low value

Small values of the width correspond to more regular texture as we have a smaller

frequency bandwidth around the main frequency.For the frequency F0, I also presents the

results for two different values

Low value High value

We can clearly see that the frequency influences the number of stripes.

I should note that the results I presented are obtained using the setup-free surface noise.

They suffer from issues related to bad normalization of the noise values but also form

issues intrinsic to this technique (non smooth normals).

Finally, I created some scenes to visualize the results.

In the following one we have two rows of textured objects using gabor noise. The upper

row is for isotropic noise and the lower one is for anisotropic noise. From Left to right, we

have 2D texture (spherical uvs), setup free surface noise and solid noise. (Scene2.exe)

4

I then tried to explore how we can use this noise to generate not only albedo values but

also roughness and metallicness. (Scene3.exe)

Some ideas that can be considered for the future may include the use of gabor noise for 3D

modeling (GPU based displacement maps per pixel on a rough mesh).

5

